2017

NO F London

N

VIRTUALIZATION IN 5G

SYSTEMS
PART |

fabrizio.granelli@unitn.it

Download the material

2017

NOF London

Table of Contents

Virtualization of networks and services:

Introduction to SDN and NFV
Virtualization and Resoure Slicing
SDN in the Wireless Domain

Q&A session |

Virtualization in 5G systems:
LTE Reference Architecture

Network Slicing
Cloud RAN

Q&A session |l

NOEF

2017

London

Introduction on SDN and NFV

2017

-
O
o
=
o
—
_—
O
Z

Planes of Networking

Data Plane: All activities involving as well as resulting
from data packets sent by the end user, e.qg.,

Forwarding

Fragmentation and reassembly

Replication for multicasting
Control Plane: All activities that are necessary to
perform data plane activities but do not involve end-
user data packets

Making routing tables

Setting packet handling policies (e.g., security)
2017

NO F London

Separation of Control and Data

O 0O O O

Plane

Controller

I OpenFlow Protocol

channel
Flow Table

Control logic is moved to a central controller

Control-plane

Switches only have forwarding elements
One expensive controller with a lot of cheap switches

OpenFlow is the protocol to send /receive forwarding rules
from controller to switches

By programming the controller, we can quickly change the
entire network behavior

2017
- Software Defined Networking

The SDN paradigm

Traditional networking Software-Defined Networking

smart, slow, (logically) centralized

Switch Programmable

switch
Control-plane l l

Data-plane Control-plane

Control-plane

.
sadd

- =0
.
.

Data-plane
Data-plane

\

' Data-plane

dumb, fast

API to the
Control-plane data plane
(e.g., OpenFlow

Data-plane
Data-plane

2017

NOF London

What is SDN2 [ONF Definition]

“The physical separation of the network control
plane from the forwarding plane, and where o
control plane controls several devices.”

1. Directly programmable

2. Agile: Abstracting control from forwarding
3. Centrally managed

4. Programmatically configured

5. Open standards-based vendor neutral

onrent&view —arrtic

017

NO F London

What do we need SDN for?

1. Virtualization: Use network resource without worrying about
where it is physically located, how much it is, how it is organized,
etc.

. Orchestration: Manage thousands of devices

Programmable: Should be able to change behavior on the fly.
. Dynamic Scaling: Should be able to change size, quantity

. Automation: Lower OpEx

. Visibility: Monitor resources, connectivity

Performance: Optimize network device utilization

. Multi-tenancy: Sharing expensive infrastructure

. Service Integration

10. Openness: Full choice of Modular plug-ins

2017
11. Unified management of computing, network NOF London
and storage

VONOUGAWN

Network control API - Northbound

Network OS

HW open interface - Southbound

Simple forwarding

HW
Simple forwarding

HW

Simple forwarding
HW

Simple forwarding » 2017
ny NOF London

Network OS

HW open interface

HW forwarding abstraction
low-level primitives to describe
Simple forwarding .
HW packet forwarding

Simple forwarding
HW

Simple forwarding
HW

Simple forwarding
HW

. 2017
NOF London

Global Network view abstraction
Permits programmer to focus on high level view of
network topology and states

Simple forwarding

HW
Simple forwarding

HW

Simple forwarding
HW

Simple forwarding 2017

Al NO F London

Network control API

\._._

Network OS / SDN Controller:

Network OS Maps high level “commands” and
programmer needs into low level switch
configuration e

N S— — | : ..

Simple forwarding

HW
Simple forwarding

HW

Simple forwarding
HW

Simple forwarding - 201 7
Al NOF London

Net Apps / Services:
Solve Distributed Systems problems
ONCE rather than for every protocol

(e.g. Dijkstra)

Network OS

HW open interface

Simple forwarding

HW
Simple forwarding

HW

Simple forwarding
HW

Simple forwarding - 2017
Al NOF London

SDN architecture, sketch

A programming analogy T
What if you were to write a
program which must
1) Know the details of the HW you

are working on e
2) Set yourself the content of each
physical memory bit

Simple forwarding : Abstractions, for separating concerns
o : and attain simplicity!

1) Machine independent language

2) Virtual memory

Simple forwarding
HW

OpenFlow V1.0

If header matches an entry, corresponding actions are performed and
counters are updated

If no header match, the packet is queued and the header is sent to the
controller, which sends a new rule. Subsequent packets of the flow are
handled by this rule.

Secure Channel: Between controller and the switch using TLS

Flow Table: Header fields Counters | Actions
Header fields Counters | Actions
Header fields Counters | Actions

Flow Table example

VLAN Ether IP
ID Type Prot
o

* 0A:C8: * * * * Port 1 102
#
« " * * * * * 192,16 * * * * Port 2 202
8.*.*
* * * * * * * * * * 21 21 DI’Op 420
% * * * * * * * 0x806 * * * Local 444
* * * * * * * * Ox1* * * * Controller 1

7 Idle timeout: Remove entry if no packets received for this time
71 Hard timeout: Remove entry after this time
o1 If both are set, the entry is removed if either one expires.

2017

NOF London

Actions

Controller can send flow table entries beforehand (Proactive) or
Send on demand (Reactive). OpenFlow allows both models.

Forward to Physical Port i or to Virtual Port:

All: to all interfaces except incoming interface

Controller: encapsulate and send to controller

Local: send to its local networking stack

Table: Perform actions in the flow table

In_port: Send back to input port

Normal: Forward using traditional Ethernet

Flood: Send along minimum spanning tree except the incoming interface
Enqueue: To a particular queue in the port 2 QoS
Drop

Modify Field: E.g., add/remove VLAN tags, ToS bits, Change TTL
2017

NOF London

FlowVisor

FlowVisor uses OpenFlow as a hardware
abstraction layer to sit logically between control
and forwarding paths on a network device

OpenFlow provides an abstraction of the network-
ing forwarding path that allows FlowVisor to slice
the network

“FlowVisor: A Network Virtualization Layer”, by Rob Sherwood, Glen Gibb, Kok-
Kiong Yap, Guido Appenzeller, Martin Casado, Nick McKeown, Guru Parulkar, White

paper, 2009.
2017

NOF London

FlowVisor concept

Mac

Win2k 0S

Linux

Slice

Slice

Slice

Open
Roads

PlugN
Serve

NOX

NOX

CXen/Qemu/etc.)"C Virtualization)"C FlowVisor)

CPU, Hard Disk,
PIC, I1/0

Hardware
Resources

Bandwidth, CPU
Topology,
FlowSpace, FIB

2017

NOEF

London

FlowVisor

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

Controllers think they're
connecting to switches

FlowVisor

Switches think they're
connecting to controller

7 7 S 7 S
(] () (]
Oooooooo Oooooooog

Oooooooog

FlowVisor features

FlowVisor intercepts
OpenFlow messages

Alice Bob Production
from gUGS'I' controllers (]) OpenFlow || OpenFlow || OpenFlow
Clnd, USing The User’S Controller J{ Controller j§ Controller
slicing policy (2), . FlowVisor".a
transparently rewrites :
(3) the message to :
control only a slice of
the network.] - *

~ + 4| Production

Messages from switches ° e Siice Policy
(4) are forwarded only OpenFlow

to guests if it matches
their slice policy

ny

Alice
Slice Policy

R “7
Translation : Resource
Allocation|

: Forwarding _ : »POHCV

Slice Policy

Switch

2017

NOF London

FlowVisor
—

Uses > to Create "Slices" — 5 slices connect to controllers
4 '
: Slice A is defined by packets with source A
Header Field >
sacer e address 10.0.0.2 or 10.0.0.3 OF controller -
Ingress Port Slice B is defined by packets with source _ [B
Ethernet Source Addr address 10.0.0.4 or 10.0.0.5 L OF controller |
Ethernet Dest Addr
Ethernet Type
VLAN id

VLAN Priority
IP Source Addr
P Dest Addr
IP Protocol
IP ToS
ICMP type
ICMP code

2017

NO F London

Percent Bandwidth

FlowVisor performance

L] L] L] L] L] L] L]
100 p CBR without QoS -
"~u’."’uﬂ".'§,“."'~o".' LR A LT NS ol LWL L Ll
80 I -
TCP with QoS
60 a R PR T, L .".‘, an r."’. "s » i
40 & -
CBRwith QoS / §%
20 = -
TCP without QoS
0 b~ — — e —
'] '] '] '] '] '] ']
0 5 10 15 20 25 30 35 40

Time(s)

FlowVisor bandwidth isolation
in TCP vs CBR

Cumulative Probability

....
~,
‘)

without FIowVis'or

et T
']

L With FIOWViSOor ======= oo :: i
=]
................ o o

0.1 1 10 100
OpenFlow New Flow Latency (ms)

Performance overhead

2017
London

NOEF

Network Function Virtualization

“NFV is a network architecture concept that proposes
using IT virtualization related technologies to virtualize
entire classes of network node functions into building
blocks that may be connected, or chained, together to
create communication services”

Wikipedia:

2017

NOF London

NFV concept

1
(| Classical Network Model: JN

Hardware Appliances

Message Session Border WAN
Router Controller Acceleration
t".l “ E
DPI . ,
Firewall Carrier Tester/QoE
Grade NAT monitor

PE Router BRAS Radio/Fixed Access

The New Network Model:
Virtual Appliances

L Network Nodesj

f\/‘\/\

MNN

standard servers, storage, switches

),

2017

NOF London

NFV vs SDN

NFV (Network Function Virtualization) and SDN are
complementary

One does not depend upon the other.

Both have similar goals but approaches are very
different

SDN needs new interfaces, control module
applications.

NFV requires moving network applications from
dedicated hardware to virtual containers on
commercial-off-the-shelf (COTS) hardware

2017

NOF London

NFV Components

Network Function (NF): Functional building block with well
defined interfaces and well defined functional behavior

Virtualized Network Function (VNF): Software
implementation of NF that can be deployed in a virtualized
infrastructure

VNF Forwarding Graph: Service chain when network
connectivity order is important, e.g. firewall, NAT, load
balancer

NFV Infrastructure (NFVI): Hardware and software required
to deploy, manage and execute VYNFs including computation,
networking and storage

NFV Management & Orchestration: The orchestration of
physical /software resources that support the infrastructure
virtualisation, and the management of VNFs 2017

NO F London

NFV Concept

Virtual Network Functions (VNF)

Hypervisor

Host OS

Hardware

Virtualiz
ation
and
Applicati

2017

NOF London

Virtualization alternatives

Ships within... Manuadl Automated Boots in...
deployment deployment
takes... takes...

Bare Metal days hours minutes minutes

Virtualization minutes minutes seconds less than a
minute

Lightweight seconds minutes seconds seconds

virtualization

From: http:/ /www.socallinuxexpo.org /sites /default/

2017
les /presentations/Jerome-Scale11x%20LXC%20Talk.pdf NOF London

Hypervisor-based vs
Container-based

— L8 08 £ 08 33 3

Binaries / Binaries / Binaries /
Libraries Libraries Libraries

Guest 05 Guest OS5 Guest OS

E— _ ey

Core Operating system

Hypervisor-based virtualization Container-based virtualization

Reasons to use containers:

Ability to easily run and accommodate legacy applications

Performance benefits of running on bare-metal, no overhead of hypervisor
Higher density and utilization for resources in the datacenter
Adoption for new technologies is accelerated, put in isolated secure
containers 2017

Reduce “shipping” pains; code is easily streamlined to customers, fa NO F London

Some container solutions

LxC (Linux Containers)
0.1.0 releases in 2008
Works with general vanilla Linux kernels off the shelf.
GNU GPLv2 License
Used as a “container engine” in Docker

Used by: Google App Engine, Parellels Virtouzzo, Rackspace Cloud Databases,
Heroku (Application Deployment Platform)

Docker
Developed by (formally dotCloud) Docker Inc.
Apache 2.0 License

Docker is really an orchestration solution built on top of the linux kernel,
namespaces, cgroups, chroot, and file system constructs. Docker originally chose
LXC as the “engine” but recently developed their own solution called
“libcontainer”

Used by: “Decker”, AWS Elastic Beanstalk Containers, Openstack Solum,
Openstack Nova

2017

NO F London

Some container solutions

OpenVZ
Supported by Parallels Inc.

Share many of the same developers as LXC, but was developed earlier on, LXC is a
derivation of OpenVZ for the mainline kernel.

GNU GPL v2 License
Runs on a patched Linux kernel (specific kernel) or 3.x with reduced feature set
Live Migration Abilities (check pointing) (CRIU “criu.org)
Rackspace Cloud Databases also utilize OpenVZ
(Free) BSD Jails

Also “non-linux” containerization mechanism. Differ from “true” linux systems of the
mainline kernel

Also an “enhanced chroot”-like mechanism where not only does it use chroot to segregate
the le system but it also does the same for users, processes and networks.

Sandboxie
Developed by Invincea for Windows XP

“Sandboxes”, like a container, are created for isolated environments.

2017

NO F London

NFV Composition

]
fmmmm YA N —— /ANIYA NS
1 VNF 1 : i VNF 1 :
| 1 I VNFC I
| I I |
— -
O—— T 0 o :
VNFC VNFC
R N |) S oy B
Virtualisation ——~___________ . | et [S— :
container
VNF w/ single component VNF w/ multiple components

2017

NO F London

NFV examples

Examples of various virtual network functions can be found
within all areas of a telecommunications network and they
can include:

Switching: BNG, CG-NAT, routers.

Tunnelling gateway elements: IPSec/SSL VPN gateways.
Traffic analysis: DPl, QoE measurement.

Signalling: SBCs, IMS.

Application-level optimisation: CDNs, load Balancers.
Home routers and set top boxes.

Mobile network nodes: HLR /HSS, MME, SGSN, GGSN/PDN-GW,
RNC.

Network-wide functions: AAA servers policy control, charging
platforms.

Security functions: firewalls, intrusion detection
systems, virus scanners, spam protection. NOF

2017

London

OpenNFVY

NFV Management

& Orchestration
@-® Execution
H H Reference Points

Os-Ma == Other

________ OSS/BSS | Orchestrator Reference Points

<+ MainNFV

2 Ref Point
Service, VNF and Se-Ma ; eference Points
T Infrastructure Description |

| § Or-Vnfm

e =hae EMS3 Ve-Vnfm

‘ i | : VNF
T T T Manager(s)
VNF 1 VNF 2 VNF 3 br-Vi
- he $ - eae VN-NF 2

Vi-Vnfm

Virtual Virtual Virtual
Computing Storage Network

Nf.Vi Virtualized
VIRTUALIZATION LAYER } : Infrastructure

Manager(s)

INITIAL
FOCUS
OF OPNFV

Hardware Resources
Computing Storage Network
Hardware Hardware Hardware

gy g g gy g g g gy Sy ————————]

OpenNFVY

'
| ' '
CE R LD LD L L] DL L] - -y
[i
'

Vi-Vnfm

Virtual Virtual Virtual
Computing Storage Network
Virtualized
VIRTUALIZATION LAYER
Infrastructure

_ Manager(s)
Hardware Resources

------ Computing Storage Network
Hardware Hardware Hardware A

k-------------- CL L L L L] L L DL L L L L L L DLl DLl

. OPEN

AKVM @ OPEN VSWITCH

. o Ceph T
Lmu;(& INTEL® DPDK

openstack’

ETSI NFV MANO

resssssssssssssesesreseeerereeeeeeeeeee=="*

' !
Os-Nfvo :
1™ OSS/BSS : i NFV Orchestrator (NFVO) :
; I
; | ! l 1 : |
' i I ! : ! - I
| : ! — —— Or-Vnfm —— — [
1 | ' 1 1 | : l c
I : | I O
| : s NS VNF -+ NEV NFVI : 5
| o : Catalog Catalog Instances Resources " _E
: i i S | 3
I 1 | : " O
I ' | i pu
L s I VeEn-Vnfm ! : O
|] l xo)
: EMS ' | VNF Manager : c
! I s | (VNFM) | ©
1 1] ! | _E
I . : VeNf-Vnfm | " o
: VNF 4 Vnfm-Vi 0 qE)
I | 4 'O
: ' -
I Vn-Nf 0 ‘ ‘ Or-Vi " g
I ! Virtualised =
: : | Nf-Vi Infrastructure | 0 >
-- NFVI $ Manager ! : i
| M
| (VIM) NFV-MANO | E
©— Execution reference points - |-~ Other reference points ~ === Main NFV reference points L

An Overview

Virtualization and Slicing

Network virtualization can be achieved by slicing the
available resources:

Bandwidth: each slice should have its own fraction of
bandwidth on a link

Topology: each slice should have its own view of network
nodes (switches, routers) and the connectivity between them

Traffic: to associate a specific setof traffic to one (or more)
virtual networks so that one set of traffic can be cleanly
isolated from another

Device CPU: computational resources must also be sliced

Forwarding tables
2017

NO F London

Slicing example

Remote control of 3
isolated slices for the
WOTBL testbed in
Trento (201 6)

VM:

Controllers

VM Flowvisor:
192.168.100.100

/ \
/ \
// RS
/ \\ N
o AN
i NN
V4 / \ \ NN
7 i SR \\\
A S W NS WML
% 3
/ / N AN N

/ / o~

/ /
/
i
/

LXC7:10007 | _
——
LXC8:10008 [~——————=2
-
i
=
LXC9:10009 |-~

2 CTRL-2:

CTRL-1:
~-1.192.168.102.201

~ 192.168.102.202

~<| CTRL-3:
192.168.102.203

— 1 LXC1:10.0.0.1
e
-

————— LXC2:10.0.0.2

™ ~
~4LXC3:10.0.0.3

LXC4:10.0.0.4
s
i
P
_______ LXC5:10.0.0.5
o
TS
= 4 LXCé: 10.0.0.6

NOF London

Slicing example

research] 10.0.0.1 10.0.0.4 10.0.0.7 192.168.102.201 1Mbps
research2 10.0.0.2 10.0.0.5 10.0.0.8 192.168.102.202 10Mbps
research3 10.0.0.3 10.0.0.6 10.0.0.9 192.168.102.203 50Mbps

Testing topology slicing
ubuntu@vml:~$ ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

From 10.0.0.1 icmp_seg=9 Destination Host Unreachable
From 10.0.0.1 icmp_seq=10 Destination Host Unreachable
From 10.0.0.1 icmp_seg=11 Destination Host Unreachable
From 10.0.0.1 icmp_seq=12 Destination Host Unreachable
From 10.0.0.1 1cmp_seq 13 Destination Host Unreachable
From 10.0.0.1 1cmp seq=14 Destination Host Unreachable

--- 10.0.0.2 ping statistics ---
16 packets transmitted, O received, +6 errors, 100%
packet loss, time 15104ms

Testing bandwidth slicing

TCP window size: 85.3 KByte (default)

[4] local 10.0.0.4 port 5001 connected with 10.0.0.1
port 33744 [1ID] Interval Transfer Bandwidth

[4] 0.0-17.9 sec 2.00 MBytes 937 Kbits/sec

Example: Slicing WiFi
o
1 OpenFlow+OpenWRT for end-to-end QoS

r N
INTERNET
— Controller Floodlight:
p— Gateway VM Ubuntu
Sedeg |P: 192.168.123.254 IP: 192.168.0.50
; ' E 8 ! J

Windows 7

ﬁ IP: 192.168.123.221
; - ||
Server 211: ' ' \\\
VM Ubuntu \
IP: 192.168.123.211 1 @ @ ;
b o / / Client 222:
(R Switch Buffalo Switch TP-Link Windows 7
IP: 192.168.0.52 IP: 192.168.0.51 IP: 192.168.123.222
VM Ubuntu
IP: 192.168.123.212 @
k J
L B,

Server 212:
2017

NOF London

Slicing WiFi - performance

1
Blue flow limited
to 10 Mbps
60 \\
55
50 - \ Both flows limited
- 45 N - QoS
SN
;;5 40 /f\v guaranteed
35]
< 30 /\A/\ /
= S ANV
320 A /
= v
@ 15 // v \\ /
10 |~ \ — —
1 % I I I I I I I I I I I I I I 1 I I I I 1 I I I I 1 I I I I 1
NO service o o o o o (@) o o o o () o (@) o o ()
differentiation Ny v o g g I 3BT LRXAIILXSI

- Any questions?

Fabrizio Granelli

fabrizio.granelli@unitn.it

