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Planes of Networking

¨ Data Plane: All activities involving as well as resulting
from data packets sent by the end user, e.g.,
¤ Forwarding
¤ Fragmentation and reassembly
¤ Replication for multicasting

¨ Control Plane: All activities that are necessary to 
perform data plane activities but do not involve end-
user data packets
¤ Making routing tables
¤ Setting packet handling policies (e.g., security)



Separation of Control and Data
Plane

¨ Control logic is moved to a central controller
¨ Switches only have forwarding elements

¨ One expensive controller with a lot of cheap switches
¨ OpenFlow is the protocol to send/receive forwarding rules

from controller to switches
¨ By programming the controller, we can quickly change the 

entire network behavior
à Software Defined Networking
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OpenFlow Protocol



The SDN paradigm
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What is SDN? [ONF Definition]

¨ “The physical separation of the network control 
plane from the forwarding plane, and where a 
control plane controls several devices.”
1. Directly programmable
2. Agile: Abstracting control from forwarding
3. Centrally managed
4. Programmatically configured
5. Open standards-based vendor neutral

https://www.opennetworking.org/index.php?option=com_content&view=articl
e&id=686&Itemid=272&lang=en



What do we need SDN for?

1. Virtualization: Use network resource without worrying about
where it is physically located, how much it is, how it is organized, 
etc.
2. Orchestration: Manage thousands of devices
3. Programmable: Should be able to change behavior on the fly.
4. Dynamic Scaling: Should be able to change size, quantity
5. Automation: Lower OpEx
6. Visibility: Monitor resources, connectivity
7. Performance: Optimize network device utilization
8. Multi-tenancy: Sharing expensive infrastructure
9. Service Integration
10. Openness: Full choice of Modular plug-ins
11. Unified management of computing, networking,
and storage



SDN architecture, sketch
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SDN architecture, sketch
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HW forwarding abstraction
low-level primitives to describe 
packet forwarding



SDN architecture, sketch
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Global Network view abstraction
Permits programmer to focus on high level view of 
network topology and states



SDN architecture, sketch
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Network OS / SDN Controller:
Maps high level “commands” and 
programmer needs into low level switch 
configuration 



SDN architecture, sketch
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14 Net Apps / Services:
Solve Distributed Systems problems 
ONCE rather than for every protocol
(e.g. Dijkstra)



SDN architecture, sketch
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A programming analogy
What if you were to write a 
program which must 
1) Know the details of the HW you 

are working on
2) Set yourself the content of each 

physical memory bit

Abstractions, for separating concerns 
and attain simplicity!

1) Machine independent language
2) Virtual memory 



OpenFlow V1.0

¨ If header matches an entry, corresponding actions are performed and 
counters are updated

¨ If no header match, the packet is queued and the header is sent to the 
controller, which sends a new rule. Subsequent packets of the flow are 
handled by this rule.

¨ Secure Channel: Between controller and the switch using TLS

Header fields Counters Actions

Header fields Counters Actions

… … …

Header fields Counters Actions

Flow Table:

Ingress
Port

Ether
Source

Ether
Dest

VLAN 
ID

VLAN
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Proto

IP ToS Src L4 
Port

Dst L4
Port



Flow Table example

¨ Idle timeout: Remove entry if no packets received for this time
¨ Hard timeout: Remove entry after this time
¨ If both are set, the entry is removed if either one expires.

Port Src
MAC

Dst
MAC

VLAN 
ID

Prio Ether 
Type

Src
IP

Dst
IP

IP 
Prot
o

IP 
T
o
S

Src
L4 
Port

Dst
L4 
Port

Action Counter

* * 0A:C8:
*

* * * * * * * * * Port 1 102

* * * * * * * 192.16
8.*.*

* * * * Port 2 202

* * * * * * * * * * 21 21 Drop 420

* * * * * * * * 0x806 * * * Local 444

* * * * * * * * 0x1* * * * Controller 1



Actions

¨ Controller can send flow table entries beforehand (Proactive) or 
Send on demand (Reactive). OpenFlow allows both models. 

¨ Forward to Physical Port i or to Virtual Port:
¤ All: to all interfaces except incoming interface
¤ Controller: encapsulate and send to controller
¤ Local: send to its local networking stack
¤ Table: Perform actions in the flow table
¤ In_port: Send back to input port
¤ Normal: Forward using traditional Ethernet
¤ Flood: Send along minimum spanning tree except the incoming interface

¨ Enqueue: To a particular queue in the port à QoS
¨ Drop
¨ Modify Field: E.g., add/remove VLAN tags, ToS bits, Change TTL



FlowVisor

¨ FlowVisor uses OpenFlow as a hardware 
abstraction layer to sit logically between control 
and forwarding paths on a network device 

¨ OpenFlow provides an abstraction of the network-
ing forwarding path that allows FlowVisor to slice 
the network

“FlowVisor: A Network Virtualization Layer”, by Rob Sherwood, Glen Gibb, Kok-
Kiong Yap, Guido Appenzeller, Martin Casado, Nick McKeown, Guru Parulkar, White 
paper, 2009.



FlowVisor concept
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Figure 1: Similar to computer virtualization, FlowVisor is a network virtualization layer that resides between
the hardware and software architectural components. OpenRoads, PlugNServe, and OpenPipes are examples
of virtual network controllers built on NOX(§ 6).

3. FLOWVISOR ARCHITECTURE
Like the virtualization layer on a computer, FlowVi-

sor sits between the underlying physical hardware and
the software that controls it (Figure 1). And like an op-
erating system uses an instruction set to control the un-
derlying hardware, FlowVisor uses the OpenFlow pro-
tocol to control the underlying physical network. Open-
Flow exposes forwarding control of a switch’s packets
to a programmable entity, i.e., the OpenFlow controller.
OpenFlow is further described elsewhere [13, 15], and
for the purposes of this paper a brief appendix sum-
marizes its main characteristics (Appendix A). FlowVi-
sor hosts multiple guest OpenFlow controllers, one con-
troller per slice, making sure that a controller can ob-
serve and control its own slice, while isolating one slice
from another (both the datapath traffic belonging to the
slice, and the control of the slice).

Broadly speaking–and in a way we make concrete
later–OpenFlow provides an abstraction of the network-
ing forwarding path that allows FlowVisor to slice the
network along the five required dimensions, and with
the following main characteristics:

• FlowVisor defines a slice as a set of flows running on
a topology of switches.2

• FlowVisor sits between each OpenFlow controller
and the switches, to make sure that a guest con-
troller can only observe and control the switches it
is supposed to.

2OpenFlow can in principle be added to Ethernet switches,
routers, circuit switches, access points and base stations. For
brevity, we refer to any OpenFlow-enabled forwarding ele-
ment as a “switch”.

• FlowVisor partitions the link bandwidth by assigning
a minimum data rate to the set of flows that make
up a slice.

• FlowVisor partitions the flow-table in each switch by
keeping track of which flow-entries belong to each
guest controller.

FlowVisor is implemented as an OpenFlow proxy
that intercepts messages between OpenFlow-enabled
switches and OpenFlow controllers (Figure 2).

3.1 Flowspace
The set of flows that make up a slice can be thought

of constituting a well-defined subspace of the entire ge-
ometric space of possible packet headers. For example,
the current version of OpenFlow3 supports forwarding
rules, called flow entries, that match on any subset of
bits in 10 fields of the packet header (from the physical
port the packet arrived on, the MAC addresses, through
to the TCP port numbers). The 10 fields are 256 bits
long in total. If we specify a flow as a match on a
specific 256 bit string, then we are defining one point
(out of 2256) in a 256-dimensional geometric space. Us-
ing wild cards (or bit masks), we can define any region
within the space. For example, if we describe a flow
with 256� k ’0’ or ’1’ bits, and k wildcard or ’X’ bits,
then we are defining a k-dimensional region. This is a
simple generalization of the commonly used geometric
representation of access control lists (ACLs) for packet
classification [11].

Because FlowVisor defines a slice as a set of flows,
we can think of a slice as being defined by a set of
(possibly non-contiguous) regions; which we call the

3Version 0.90 is the latest.
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FlowVisor features

¨ FlowVisor intercepts 
OpenFlow messages 
from guest controllers (1) 
and, using the user’s 
slicing policy (2), 
transparently rewrites 
(3) the message to 
control only a slice of 
the network.

¨ Messages from switches 
(4) are forwarded only 
to guests if it matches 
their slice policy
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Figure 2: The FlowVisor intercepts OpenFlow mes-
sages from guest controllers (1) and, using the user’s
slicing policy (2), transparently rewrites (3) the mes-
sage to control only a slice of the network. Messages
from switches (4) are forwarded only to guests if it
matches their slice policy.

slice’s “flowspace”. In general, we say that FlowVisor
slices traffic using flowspaces. Given a packet header
(a single ”point”), FlowVisor can decide which flows-
pace contains it, and therefore which slice (or slices) it
belongs to. FlowVisor can isolate two slices by mak-
ing sure their flowspaces don’t overlap anywhere in the
topology; or it can decide which switches can be used
to communicate from one slice to another. It can also
allow a packet to belong to two or more slices; for ex-
ample, if one slice is used to monitor other slices.

3.2 FlowVisor Design Goals
FlowVisor was designed with the following goals: (1)

the virtualization should be transparent to the network
controller, (2) there should be strong isolation between
network slices, and (3) the slice definition policy should
be rich and extensible. We discuss the rationale for each
of these choices below.

Transparency. The virtualization layer should be
transparent to both the network hardware and the con-
trollers managing the virtual networks. The reasons for
this are two-fold. First, an important motivation of vir-
tual networks is the ability to prototype and debug pro-
tocols on realistic topologies. If the controller must be
actively aware of the virtualization layer, it is possible to
design a controller that functions in the virtual environ-
ment but not the real network. Second, it’s important to
decouple network virtualization technology from con-
troller design so that they can be updated and improved
independently. In our design, neither switch nor guest

OpenFlow controller need be modified to interoperate
with FlowVisor.

Isolation. The virtualization layer must enforce
strong isolation between slices—even under adversarial
conditions. The promises of virtualization break down
if one slice is able to exhaust the resources of another.
We describe the details of the isolation mechanisms in
§4 and evaluate their effectiveness in §5.

Extensible Slice Definition. Because we have lim-
ited experience in operating virtual networks, it is im-
portant to have a slicing policy that is flexible, extensi-
ble, and modular. Much like an operating system sched-
uler allocates CPU resources among many processes,
the slicing policy must allocate networking resources
(§2) among network slices. We believe resource alloca-
tion among slices will be an active area of research. In
FlowVisor, the slicing policy is implemented as a sepa-
rate logical module for ease of development.

3.3 System Description
FlowVisor is a specialized OpenFlow controller.

FlowVisor acts as a transparent proxy between
OpenFlow-enabled network devices and multiple guest
OpenFlow controllers (Figure 2). All OpenFlow mes-
sages, both from switch to guest and vice versa, are sent
through FlowVisor. FlowVisor uses the OpenFlow pro-
tocol to communicate with both guests and switches.
The guest controllers require no modification and be-
lieve they are communicating directly with the network
devices.

We illustrate the FlowVisor’s operation with the fol-
lowing simple example (Figure 2)—§6 describes more
compelling use-cases. Imagine an experimenter (Bob)
builds a guest controller that is an HTTP load-balancer
designed to spread all HTTP traffic over a set of servers.
While the controller will work on any HTTP traffic,
Bob’s FlowVisor policy slices the network so that he
only sees traffic from one particular IP source address.
His guest controller doesn’t know the network has been
sliced, so doesn’t realize it only sees a subset of the
HTTP traffic. The guest controller thinks it can con-
trol, i.e., insert flow entries for, all HTTP traffic from
any source address. When Bob’s controller sends a flow
entry to the switches (e.g., to redirect HTTP traffic to
a particular server), FlowVisor intercepts it (Figure 2-
1), examines Bob’s slice policy (Figure 2-2), and re-
writes the entry to include only traffic from the allowed
source (Figure 2-3). Hence the controller is controlling
only the flows it is allowed to, without knowing that
the FlowVisor is slicing the network underneath. Sim-
ilarly, messages that are sourced from the switch (e.g.,
a new flow event—Figure 2-4) are only forwarded to
guest controllers whose flowspace match the message.

Thus, FlowVisor enforces transparency and isolation
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FlowVisor performance

the CBR slice to a class that guarantees at least 30%.
Note that theses are minimum bandwidth guarantees, not
maximum. With the bandwidth isolation features en-
abled, the TCP slice achieves an average of 64.2% of
the total bandwidth and the CBR an average of 28.5%.
Note that the event at 20 seconds where the CBR with
QoS jumps and the TCP with QoS experiences a cor-
responding dip . We believe this to be the result of a
TCP congestion event that allowed the CBR traffic to
temporarily take advantage of additional available band-
width, exactly as the minimum bandwidth QoS class is
designed.
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Figure 6: Effect of FlowVisor bandwidth isolation on
competing TCP and CBR traffic

5.2.2 FlowSpace
To validate the correctness of the FlowSpace isolation

algorithm, we design 21 distinct experiments. These ex-
periments verify that slices cannot affect traffic that is
not their own, that their flow entries are correctly rewrit-
ten to affect only their traffic, and that flow entry expi-
ration messages only go to the correct slices. These test
cases have been incorporated into the FlowVisor’s auto-
mated testing suite.

5.2.3 Switch CPU
To quantify our ability to isolate the switch CPU re-

source, we show two experiments that monitor CPU-
usage overtime of a switch with and without iso-
lation enabled. In the first experiment (Figure 7),
the OpenFlow controller maliciously sends port stats
request messages (as above) at increasing speeds
(2,4,8,. . .,1024 requests per second). In our second ex-
periment (Figure 8), the switch generates new flow mes-
sages faster than its CPU can handle and a faulty con-
troller does not add a new rule to match them. In both
experiments, we show the 1-second-average switch’s
CPU utilization over time, and the FlowVisor’s isola-
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Figure 7: FlowVisor’s message throttling isola-
tion prevents a malicious controller from saturating
switch CPU.
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Figure 8: FlowVisor’s new flow messages throttling
prevents a faulty controller from saturating switch
CPU.

tion features reduce the switch utilization from 100% to
a configurable amount. In the first experiment, we note
that the switch could handle less than 256 port status re-
quests without appreciable CPU load, but immediately
goes to 100% load when the request rate hits 256 re-
quests per second. In the second experiment, the bursts
of CPU activity in Figure 8 is a direct result of using null
forwarding rules (§4.3) to rate limit incoming new flow
messages. We expect that future versions of OpenFlow
will better expose the hardware CPU limiting features
already in switches today.

6. DEPLOYMENT EXPERIENCE
To gain experience with running, administering, and

debugging virtual networks, we deploy FlowVisor on
our production networks. By “production” network, we
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Performance overhead

by throttling the OpenFlow message rate to a maximum
rate per second. Because the amount of CPU resources
consumed vary by message type and by hardware im-
plementation, it is future work to dynamically infer the
cost of each OpenFlow message for each hardware plat-
form.

Slow-Path Forwarding. Packets that traverse the
“slow” path—i.e., not the “fast” dedicated hardware
forwarding path—consume CPU resources. Thus, an
OpenFlow rule that forwards packets via the slow path
can consume arbitrary CPU resources. FlowVisor pre-
vents guest controllers from inserting slow-path for-
warding rules by rewriting them as one-time packet for-
warding events, i.e., an OpenFlow “packet out” mes-
sage. As a result, the slow-path packets are rate limited
by the above two isolation mechanisms: new flow mes-
sages and controller request rate limiting.

Internal Bookkeeping. All network devices use
CPU to update their internal counters, process events,
update counters, etc. So, care must be taken to ensure
that there are sufficient CPU available for the switch’s
bookkeeping. The FlowVisor accounts for this by ensur-
ing that the above rate limits are tuned to leave sufficient
CPU resources for the switches internal function.

As with bandwidth isolation, these CPU-isolation
mechanisms are not inherent to FlowVisor’s design, but
rather a work-around to deal with the existing hard-
ware abstraction. A better long-term solution would
be to expose the switch’s existing process scheduling
and rate-limiting features via the hardware abstraction.
Some architectures, e.g., the HP ProCurve 5400, already
use these rate-limiters to implement switch CPU isola-
tion between the OpenFlow and non-OpenFlow enabled
VLANs. Adding these features to OpenFlow is an active
point of future work.

4.4 FlowSpace Isolation
Each slices must be restricted to only affecting flows

in their flowspace. The FlowVisor performs message
rewriting to transparently ensure that a slice only has
control over its own flows and cannot affect other slices
flows. Not all rules can be rewritten to fit to a slice: the
FlowVisor will only make rules more specific. So, using
the previous slicing example (§3.4), if Bob’s controller
tried to create a rule affecting all traffic, the FlowVi-
sor would rewrite the rule to only affect TCP traffic to
port 80. However, the FlowVisor will not, for example,
rewrite a rule that affects port 22 traffic to only affect
port 80 traffic. In the case of rules that cannot be rewrit-
ten, the FlowVisor sends an error message back to the
controller indicating that the flow entry cannot be added.

4.5 Flow Entries Isolation
The FlowVisor counts the number of flow entries

used per slice and ensures that each slice does not ex-
ceed a preset limit. The FlowVisor increments a counter
for each rule a guest controller inserts into the switch
and then decrements the counter when a rule expires.
Due to hardware limitations, certain switches will inter-
nally expand rules that match multiple input ports, so
the FlowVisor needs to handle this case specially. The
OpenFlow protocol also provides a mechanism for the
FlowVisor to explicitly list the flow entries in a switch.
When a guest controller exceeds its flow entry limit, any
new rule insertions received a “table full” error message.

4.6 OpenFlow Control Isolation
In addition to physical resources, the OpenFlow con-

trol channel itself must be virtualized and isolated. For
example, all messages in OpenFlow include a unique
transaction identifier; the FlowVisor must rewrite the
transaction IDs to ensure that messages from different
guest controllers do not use the same ID. Similarly,
OpenFlow uses a 32-bit integer to identify the buffer
where a packet is queued while its forwarding decision
is pushed up to the controller. The FlowVisor needs to
ensure that each guest controller can only access its own
buffers. Status messages, e.g., link-down on a port, have
to be duplicated to all of the affected slices. Vitalizing
the control channel is made easier because the Open-
Flow protocol only defines 16 message types.

5. EVALUATION
To motivate the efficiency and robustness of the de-

sign, in this section we evaluate both the FlowVisor’s
performance and isolation properties.

5.1 Performance Overhead
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Adding an additional layer between control and data
paths adds overhead to the system. However, as a re-
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FlowVisor bandwidth isolation
in TCP vs CBR



Network Function Virtualization

“NFV is a network architecture concept that proposes 
using IT virtualization related technologies to virtualize
entire classes of network node functions into building 
blocks that may be connected, or chained, together to 

create communication services”

Wikipedia: 
http://en.wikipedia.org/wiki/Network_Functions_Virtualization



NFV concept
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Hold on... what is NFV, again?



NFV vs SDN

¨ NFV (Network Function Virtualization) and SDN are 
complementary
¤ One does not depend upon the other.

¨ Both have similar goals but approaches are very 
different

¨ SDN needs new interfaces, control module 
applications.

¨ NFV requires moving network applications from 
dedicated hardware to virtual containers on 
commercial-off-the-shelf (COTS) hardware

https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_
White_Paper3.pdf



NFV Components

¨ Network Function (NF): Functional building block with well 
defined interfaces and well defined functional behavior

¨ Virtualized Network Function (VNF): Software 
implementation of NF that can be deployed in a virtualized 
infrastructure

¨ VNF Forwarding Graph: Service chain when network 
connectivity order is important, e.g. firewall, NAT, load 
balancer

¨ NFV Infrastructure (NFVI): Hardware and software required 
to deploy, manage and execute VNFs including computation, 
networking and storage

¨ NFV Management & Orchestration: The orchestration of 
physical/software resources that support the infrastructure 
virtualisation, and the management of VNFs



NFV ConceptVirtualization as a Paradigm 
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Examples of VNFs: 
 
•  Switching: BNG, CG-NAT, routers. 
•  Mobile network nodes: HLR/HSS,  

MME, SGSN, GGSN/PDN-GW, RNC. 
•  Home routers and set top boxes. 
•  Tunnelling gateway elements. 
•  Traffic analysis: DPI. 
•  Signalling: SBCs, IMS. 
•  Network-wide functions: AAA servers,  

policy control. 
•  Application-level optimisation: CDNs,  

Load Balancers. 
•  Security functions: Firewalls, intrusion  

detection systems. 

Virtual Network Functions (VNF) 
 

2 



Virtualization alternatives

Ships within… Manual 
deployment 
takes…

Automated 
deployment
takes…

Boots in…

Bare Metal days hours minutes minutes

Virtualization minutes minutes seconds less than a 
minute

Lightweight 
virtualization

seconds minutes seconds seconds

From: http://www.socallinuxexpo.org/sites/default/ 
les/presentations/Jerome-Scale11x%20LXC%20Talk.pdf 



Some of the main business drivers and strategic reasons to use containers are:

Ability to easily run and accommodate legacy applications

Performance bene�ts of running on bare-metal, no overhead of hypervisor

Higher density and utilization for resources in the datacenter

Adoption for new technologies is accelerated, put in isolated secure containers

Reduce “shipping” pains; code is easily streamlined to customers, fast. 

Container-based

            Containers have been around for over 15 years, so why is there an in�ux of attention for containers? As com-

pute hardware architectures become more elastic, potent, and dense, it becomes possible to run many applications

at scale while lowering TCO, eliminating the redundant Kernel and Guest OS code typically used in a hypervisor-

based deployment. This is attractive enough but also has bene�ts such as eliminating performance penalties, in-

crease visibility and decrease di�culty of debug and management.

Hypervisor-based vs 
Container-based

Some of the main business drivers and strategic reasons to use containers are:

Ability to easily run and accommodate legacy applications

Performance bene�ts of running on bare-metal, no overhead of hypervisor

Higher density and utilization for resources in the datacenter

Adoption for new technologies is accelerated, put in isolated secure containers

Reduce “shipping” pains; code is easily streamlined to customers, fast. 

Container-based

            Containers have been around for over 15 years, so why is there an in�ux of attention for containers? As com-

pute hardware architectures become more elastic, potent, and dense, it becomes possible to run many applications

at scale while lowering TCO, eliminating the redundant Kernel and Guest OS code typically used in a hypervisor-

based deployment. This is attractive enough but also has bene�ts such as eliminating performance penalties, in-

crease visibility and decrease di�culty of debug and management.

Hypervisor-based virtualization Container-based virtualization

Reasons to use containers:
• Ability to easily run and accommodate legacy applications
• Performance benefits of running on bare-metal, no overhead of hypervisor
• Higher density and utilization for resources in the datacenter
• Adoption for new technologies is accelerated, put in isolated secure 

containers
• Reduce “shipping” pains; code is easily streamlined to customers, fast.



Some container solutions

¨ LxC (Linux Containers)
¤ 0.1.0 releases in 2008
¤ Works with general vanilla Linux kernels off  the shelf. 
¤ GNU GPLv2 License
¤ Used as a “container engine” in Docker
¤ Used by: Google App Engine, Parellels Virtouzzo, Rackspace Cloud Databases, 

Heroku (Application Deployment Platform)
¨ Docker

¤ Developed by (formally dotCloud) Docker Inc.
¤ Apache 2.0 License
¤ Docker is really an orchestration solution built on top of the linux kernel, 

namespaces, cgroups, chroot, and  file system constructs. Docker originally chose 
LXC as the “engine” but recently developed their own solution called 
“libcontainer”

¤ Used by: “Decker”, AWS Elastic Beanstalk Containers, Openstack Solum, 
Openstack Nova



Some container solutions

¨ OpenVZ
¤ Supported by Parallels Inc.
¤ Share many of the same developers as LXC, but was developed earlier on, LXC is a 

derivation of OpenVZ for the mainline kernel.
¤ GNU GPL v2 License
¤ Runs on a patched Linux kernel (specific kernel) or 3.x with reduced feature set
¤ Live Migration Abilities (check pointing) (CRIU “criu.org)
¤ Rackspace Cloud Databases also utilize OpenVZ

¨ (Free) BSD Jails
¤ Also “non-linux” containerization mechanism. Differ from “true” linux systems of the 

mainline kernel
¤ Also an “enhanced chroot”-like mechanism where not only does it use chroot to segregate 

the  le system but it also does the same for users, processes and networks.
¨ Sandboxie

¤ Developed by Invincea for Windows XP
¤ “Sandboxes”, like a container, are created for isolated environments.



NFV Composition



NFV examples

¨ Examples of various virtual network functions can be found 
within all areas of a telecommunications network and they 
can include:
¤ Switching: BNG, CG-NAT, routers.
¤ Tunnelling gateway elements: IPSec/SSL VPN gateways.
¤ Traffic analysis: DPI, QoE measurement.
¤ Signalling: SBCs, IMS.
¤ Application-level optimisation: CDNs, load Balancers.
¤ Home routers and set top boxes.
¤ Mobile network nodes: HLR/HSS, MME, SGSN, GGSN/PDN-GW, 

RNC.
¤ Network-wide functions: AAA servers policy control, charging 

platforms.
¤ Security functions: firewalls, intrusion detection

systems, virus scanners, spam protection.



OpenNFV
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OpenNFV
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ETSI NFV MANO
NFV Management and Orchestration Architecture 
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Virtualization and Slicing

¨ Network virtualization can be achieved by slicing the 
available resources:
¤ Bandwidth: each slice should have its own fraction of 

bandwidth on a link
¤ Topology: each slice should have its own view of network 

nodes (switches, routers) and the connectivity between them
¤ Traffic: to associate a specific setof traffic to one (or more) 

virtual networks so that one set of traffic can be cleanly 
isolated from another

¤ Device CPU: computational resources must also be sliced
¤ Forwarding tables



Slicing example

Towards Remote Access to Virtualized Telecom Research Infrastructures            February 2017

Figure:4.2. Lab Set up of the openflow network part 

Figure:4.2. Lab Set up of the openflow network part

Figure:4.3. The WOTBL testbed from Web-UI of floodlight controller

GARR Italian academic and research network and University of Trento project 
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Remote control of 3 
isolated slices for the 
WOTBL testbed in 
Trento (2016)



Slicing example

Slice Name Hosts included in the slice Assigned controller Provided bitrate

research1 10.0.0.1 10.0.0.4 10.0.0.7 192.168.102.201 1Mbps

research2 10.0.0.2 10.0.0.5 10.0.0.8 192.168.102.202 10Mbps

research3 10.0.0.3 10.0.0.6 10.0.0.9 192.168.102.203 50Mbps

ubuntu@vm1:~$ ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=9 Destination Host Unreachable
From 10.0.0.1 icmp_seq=10 Destination Host Unreachable
From 10.0.0.1 icmp_seq=11 Destination Host Unreachable
From 10.0.0.1 icmp_seq=12 Destination Host Unreachable
From 10.0.0.1 icmp_seq=13 Destination Host Unreachable
From 10.0.0.1 icmp_seq=14 Destination Host Unreachable
--- 10.0.0.2 ping statistics ---
16 packets transmitted, 0 received, +6 errors, 100% 
packet loss, time 15104ms

Testing topology slicing

Testing bandwidth slicing
TCP window size: 85.3 KByte (default)
-------------------------------------------------------
[4] local 10.0.0.4 port 5001 connected with 10.0.0.1 
port 33744 [ ID] Interval Transfer Bandwidth
[ 4] 0.0-17.9 sec 2.00 MBytes 937 Kbits/sec



Example: Slicing WiFi

¨ OpenFlow+OpenWRT for end-to-end QoSStudio sulla possibilità di integrazione di un router consumer in una rete basata su SDN 
 

11 
 

 
Terza topologia utilizzata: due host cablati e due host wireless collegati mediante uno switch ed un access 
point messi in cascata, controller SDN OpenDayLight, rete collegata ad internet attraverso un gateway  



Slicing WiFi - performance
Studio sulla possibilità di integrazione di un router consumer in una rete basata su SDN 

 

19 
 

 

 
Test 1 e 2: nei primi 100 secondi per entrambi gli host non è stata configurata alcuna regola per  il QoS, si 
può notare infatti come la banda disponibile sia suddivisa circa a metà, con le tipiche fluttuazioni dovute ad 
un servizio best effort ed al canale wireless; a 100s  il traffico server 211 ‐ client 221 è stato assegnato alla 
coda a 10Mbps,  lasciando  la  restante ampiezza di banda a  completa disposizione dell’altra  coppia  client 
server; a 200s al  traffico  server 212  ‐ client 222 è  stata  infine assegnata  la coda a 4Mbps;  il  test è  stato 
eseguito con risoluzione di 10s (test 1) e di 1s (test 2) fra le misurazioni; si noti come nel secondo test venga 
rivelato un andamento ondulatorio del  traffico nell’intorno del  limite, che  in media porta al valore esatto 
imposto tramite il QoS 
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Any questions?


